
Energy efficiency and fault tolerance analysis of
hard real-time systems

Sandra oši and Milun Jevti

Abstract - In this paper the tradeoff between dynamic voltage
and frequency scaling (DVFS) techniques and faults tolerance are
considered. We analyzed this tradeoff using one heuristic-based
DVFS algorithm which we designed. The proposed algorithm
minimizes the energy consumption of one real-time task set when
the transient faults are exceeded. It is assumed that the tasks
execute on processors with variable frequency and voltage levels.
The simulation results show that our proposed algorithm can be
used for real-time systems analysis from the perspective of
finding compromise between energy efficiency and fault
tolerance.

Keywords - Dynamic voltage and frequency scaling, Fault
tolerance, Real-time systems.

I. INTRODUCTION

Hard real-time systems (HRTS) play an important role

in many areas of daily life: robotics, cosmic research,
automotive industry, process control, factory automation…
Those systems have been designed in order to be safe and
extremely reliable. They are usually realized as real time
systems with the ability of tolerating some faults. A fault-
tolerant HRTS has to ensure that faults in the system do not
lead to a failure.

Dependability of one real-time system can be affected
by different kinds of faults, including transient, permanent
and intermittent faults. Among these, the transient faults
are much more common than faults of other two types.
Since transient faults have the feature that they occur and
then disappear, fault tolerance can be achieved, running the
task affected by a transient fault again (i.e. re-executing the
task). It means that time redundancy can be used as fault-
tolerance techniques by using free slack time in the system
schedule to perform recovery executions, [1].

Beside high level of dependability, energy efficiency is
crucial to many real-time systems due to their limited
energy supply and severe thermal constraints of the
operating environment. Dynamic Voltage and Frequency
Scaling (DVFS) is the most popular and widely deployed
technique for reducing power and energy consumption of
processors [2], [3], [4], [5]. Nowadays, DVFS is a
commonly used technique for energy management and is
supported by many commercial processors [6].

Fault tolerances through time redundancy as well as
energy management through frequency and voltage scaling

have been well studied in the context of real-time systems.
For HRTS that require both fault tolerance and energy

efficiency, there is a lack of efficient solutions. Simply
applying fault recovery techniques and energy
minimization techniques one after the other only results in
inferior quality. This is because minimizing energy first
may not leave enough slack for fault recovery, and
minimizing energy after fault recovery reservation treats
normal task executions and re-executions (for fault
recovery) equally, which is equivalent to optimizing the
worst case that happens rarely. Since, free slack time is a
limited resources, it is obvious that more slack time for
DVFS technique means less time for fault tolerance, and
vice versa. Therefore, there is a tradeoff between low
energy consumption and high fault-tolerance.

The tradeoff between DVFS techniques and faults
tolerance is focus of this paper. In accordance with that, we
designed one heuristic-based DVFS algorithm and used it
for energy efficiency and fault tolerance analysis of HRTS.

The rest of the paper is organized as follows. Section II
describes real-time system, power, fault and feasibility
models. Next section III introduces our proposed heuristic-
based DVFS algorithms. Section IV gives the simulation
results and finally, Section V presents our conclusions.

II. MODELS DESCRIPTION

A. System model

We consider one uniprocessor real-time system with
variable CPU frequency fj (j=1,..., m) where fj < fj+1. The
voltage and the operating frequency of the CPU may be
switched between m values. This system can be used for
one real-time task set execution. We assume a set of n real-
time tasks, ={ 1,..., n} where each tasks are defined by a
minimum inter-arrival time Ti, worst case execution time
(WCET) Ci and deadline Di. We assume that Di Ti, for i =
1, 2, ..., n. The WCET of real-time tasks corresponds to
executing the task at the maximum frequency fm. For
simplicity, we assume that the WCET of a task scales
linearly with the processing speed. So, if we scale the
operating frequency by a factor , then WCET must be
scaling by factor 1/ , i.e.

Ci (fj)= Ci (fm) fm / fj.
Each task is assigned a unique priority pi and all of

them are periodic, fully preemptive and independent.
Algorithm for scheduling real-time tasks could be any
priority assignment algorithm, [7].

Sandra oši and Milun Jevti are with the Department of
Electronics, Faculty of Electronic Engineering, University of
Niš, Aleksandra Medvedeva 14, 18000 Niš, Serbia, E-mail:
{sandra.djosic, milun.jevtic}@elfak.ni.ac.rs.

101

Proceedings of Small Systems Simulation Symposium 2012, Niš, Serbia, 12th-14th February 2012

B. Power model

Power consumption of an active processor can be

modeled as
PA(f) = Pd(f) + Pind,

where Pd(f) and Pind are frequency dependent power and
frequency independent power respectively [8]. Frequency
dependent power is

Pd(f) = V2(f) Cef f
where V is supply voltage and it is a function of operating
frequency, Cef is the switch capacitance and f is the
frequency. Beside power, for DVFS techniques energy is
equally important and it is defined as the integral of power
over time.

Fig. 1 Power and energy consumption for real-time task i:
a) for frequency f and voltage V

b) for frequency f/2 and voltage V
c) for frequency f /2 and voltage V/2

Fig. 1 a) illustrates energy consumption of one real-time

task i on operating frequency f and for supply voltage V.
Energy of real-time task i is proportional to the marked
rectangle area. Fig. 1 b) presents the situation when the
operating frequency f is reduced by half and because of that
task needs more time to execute. In that situation
processor’s power consumption is lower but the energy

consumption remains the same. Fig. 1 c) shows the
influence on power and energy consumption when supply
voltage V is reduces by half. Lowering the supply voltage V
the significant amount of energy could be reduced, because
of the quadratic relation between power and V. The
maximum energy reduction is obtained by lowering the
supply voltage and operating frequency simultaneous.

C. Fault model

We assume that faults can occur during execution of

any task. We consider transient faults and assume that the
consequences of a fault can be eliminated by simple re-
execution of the affected task at its original priority level
and at its original CPU frequency. The re-execution of the
corrupted task must not violate timing constraints of any
task in .

D. Feasibility model

In our approach we use the response time analysis

(RTA) to check the feasibility of fault tolerant real-time
task set. In the RTA, the fault-tolerance capability of a RTS
is represented by a single parameter, TF, which corresponds
to minimum time interval between two consecutive faults
that the RTS can tolerate. More about RTA can be found in
[9], [10].

The basic equation characterize for RTA is Eq. (1).

)C(max
T
RC

T
RCR j

i)i(hpjF

n
i

)i(hpj
j

j

n
i

i
1n

i
 (1)

With Eq. (1) the response time Ri of a task i could be

calculated. Eq. (1) has three main addends. The first is
WCET Ci for a task i. The second presents interference
due to preemption by higher priority tasks. We use hp(i) to
denote the set of tasks with higher priorities than i,
hp(i)={ j pj > pi}. The third addend refers to possible
faults in the system. If we assume that inter-arrival time

between faults is TF then there can be at most
FT
iR

 faults

during the response time Ri of task i. Since these faults
could occur during the execution of task i or any higher
priority task which has preempted i, each fault may add

)jC(
i)i(hpj

max to the response time of task i. So, the

third addend in Eq. (1) presents an extra time needed tasks
recovery due to faults.

102

Proceedings of Small Systems Simulation Symposium 2012, Niš, Serbia, 12th-14th February 2012

Since Ri appears on both sides Eq. (1) is recurrence
relations which starts with iC0

iR . The solution is found

when n
iR1n

iR . If during the iteration process we get that

iD1n
iR then task i is infeasible and iteration process

must be terminated.
Fig. 2 illustrates RTA applied on one simple RTS with

two periodic real-time tasks i and j. Two faults occur in
the system and the time between these two consecutive

faults is TF.
Fig. 2 a) presents the situation when first fault occurs

just a little bit before the end of tasks j1. System
overcomes this fault by executing task j1 again. This is
situation when TF is long enough and real-time system can
overcome these faults. System of these two tasks are
schedulable i.e. both tasks execute before their deadlines,
Di and Dj. Response time of tasks i and j are the output
results of RTA and they are also shown on Fig. 2 a).

Fig. 2 b) presents scheduling of the same real-time tasks
i and j when two faults occur in the system. Now, time

between two consecutive faults TF is not long enough and
real-time system cannot tolerate these faults. First fault
occurs just a little bit before the end of tasks i1 execution.
Real-time system can overcomes this fault by executing
task i1 again. Second fault occurs just a little bit before the
end of tasks j1 execution. Now time redundancy is not
enough to tolerate this fault. Systems starts procedure for
overcoming fault by executing task j1 again but timing
characteristics of tasks j1 cannot be satisfied and j1
missing its deadline i.e. Rj > Dj. This is not acceptable in

one hard real-time system, so in this case real-time system
is not fault tolerant.

III. PROPOSED DVFS ALGORITHM

The focus of this section is to explain our proposed

DVFS policy which fulfils energy efficiency and faults
tolerance requirements. For this purpose we created a
heuristic-based algorithm to find appropriate execution
frequency for each task, from the real-time tasks set, that
minimize energy consumption when faults are absent. The
RTA is the basic of our proposed algorithm. This analysis
is used to guarantee feasibility of real-time tasks set and
fault tolerance.

Fig. 3 shows the pseudo code of our proposed
algorithm. The input parameters for the algorithm are:

- CPU frequency fj (j=1,..., m) where fj < fj+1 and m
is number of frequency levels;

- characteristics for all n real-time tasks from the
set: inter-arrival time Ti, worst case execution time
Ci, priority pi and deadline Di, for i=1,..., n;

- minimum time interval between two consecutive
faults TF.

Input: CPU frequency levels fj (j=1..m),
 characteristics for n real time tasks (Ci, Di, Ti, pi),
 fault tolerant constraint (TF)

 (1) for each Task in TaskSet set Task’s_Freq to fm and set

Task’s_Key to true;
 (2) repeat step (3) to (7) until there are true Task’s_Key in

the TaskSet;
 (3) for each unlock Task in TaskSet do
 (4) temporarily set Task’s_Freq to Lower_Task’s_Freq;
 (5) if new TaskSet is not feasible
 (6) then set Task’s_Key to false;
 (7) else calculate Power as Power(Task’s_Freq) –

Power(Lower_Task’s_Freq);
 (8) find Task with maximum Power and set

Task’s_Freq to Lower_Task’s_Freq;

 Output: TaskSet with new frequency assigne to each Task

Fig. 3 Heuristic algorithm solution

The algorithm starts with assigning the maximum
execution frequency, fm, to each real-time task, step (1).
Also, at the beginning, all tasks are allowed to change the
frequency - we say that all tasks are unlocked. An iteration
of the algorithm decreases the frequency of one task for
one frequency level. The chosen task is one for which the
frequency decrement yields maximum power reduction
among all unlocked tasks provided that tasks set remains
feasible. To find such task, the algorithm checks all

Fig. 2 a) TF is long enough and RTS is fault tolerant
b) TF is not long enough that RTS stays fault tolerant

a)

b)

103

Proceedings of Small Systems Simulation Symposium 2012, Niš, Serbia, 12th-14th February 2012

currently unlocked task. For example, frequency index of
one unlock task i is temporarily decreased for one
frequency level, i.e. from fj to fj-1, step (4), and feasibility of
task-set is tested using Eq. (1), step (5). If task-set is not
feasible, i is locked, step (6). Otherwise, if task-set is
feasible, the difference between power consumption of i at
lower (fj-1) and higher (fj) frequency is calculated, step (7),
as:

Pi = (Ci(fj)-Ci(fj-1))/Ti.
Then, i’s frequency is changed back to fi. After checking
all tasks, one that remains unlocked and provides the
maximal power reduction is selected, and its frequency
index is decremented, step (8). Additionally, the selected
task is locked if its new frequency equals 1, i.e.
corresponds to the lowest execution frequency, f1. After
that, the algorithm enters the next iteration. The algorithm
finishes when there are no more unlocked tasks. The
frequency assignment to each task is algorithm’s output.

IV. SIMULATION RESULTS

The simulator we realized is based on our proposed

heuristic-based algorithm. The input parameters of the
simulator are real-time task set characteristics, processor’s
voltage and frequency levels and fault constraints. On the
bases of proposed algorithm, simulator has to find the
appropriate execution frequencies for each real-time task
that lead to the maximum energy savings for the given fault
tolerance constraints. Power consumption of task set are
simulator’s output result.

TABLE I

TASKS SET FROM GENERIC AVIONICS PLATFORM

i pi
Ci

(ms)
Ti=Di
(ms)

Nav_Status 1 1000 1

BET_E_Status_Update 2 1000 1

Display_Stat_Update 3 200 3

Display_Keyset 4 200 1

Display_Stores_Update 5 200 1

Nav_Steering_Cmds 6 200 3

Tracking_Target_Upd 7 100 5

Display_Hook_Update 8 80 2

We perform simulations with a number of synthesized

real-time tasks sets and few real-world applications. The
characteristics of on of the real-world application are
summarized in Table I. It is a task set taken from the
Generic Avionics Platform (GAP) used in [11].

For the CPU frequency levels we used data from [6]
based on the published data of Intel Xscale PXA270. The
data sheet of this processor is available online at its
manufactures’ websites. We used specifications listed in
Table II.

 TABLE II
FREQUENCY AND VOLTAGE LEVELS OF INTEL XSCALE PXA270

Frequency
(MHz)

Voltage
(V)

Active power
consumption

(mW)

624 1.55 925

520 1.45 747

416 1.35 570

312 1.25 390

208 1.15 279

104 0.9 116

13 0.85 44.2

Fig. 4 shows the simulation results for GAP task set and

Intel Xscale PXA270 processor. The x-axis represents the
ratio of TFmin to TF. TFmin is minimum time interval between
two consecutive faults that the task set can tolerate on
maximal executing frequency and TF is input simulation
parameter. This axis represents the normalized TF value
which is proportional to fault tolerance of the task set. The
y-axis represents the power reduction calculated in
percents. This reduction is presented as power saving with
respect to the power consumption at maximum frequency.

The simulation was done for three possible scenarios
connected with processor. In the first case we used all 7
voltage levels, in the second 4 (0.85V, 1.15V, 1.35V,
1.55V) and in the third just 2 voltage levels (1.15V,
1.55V).

All three scenarios indicate the same fact that power
reduction leads to less fault tolerance and vice versa. It can
be concluded that power reduction is better when more
voltage levels are included. Now, due to simulation results,
we can better perceive the tradeoff between power
consumptions and fault tolerance. For example, let’s
suppose that power reduction demands for the given task
set are between 16% and 20%. It can be seen, from the Fig.
4, that 7 voltage levels processor fulfill the power reduction
demands. Also, fault tolerances vary for the given power
reduction interval, so the best is to choose one with
maximal tolerances.

Realized simulator offers the possibility to analyze one
real-time task set when the main question is to find
compromise between power or energy consumption and
fault tolerance constraints. Our opinion is that this
simulator could be successfully used in the RTS design
proces

104

Proceedings of Small Systems Simulation Symposium 2012, Niš, Serbia, 12th-14th February 2012

0 0.025 0.05 0.075 0.1 0.125 0.15 0.175 0.2 0.225 0.25 0.275 0.3 0.325 0.35 0.375 0.4
0

2

4

6

8

10

12

14

16

18

20

22

24

fault tolerancy (TFmin/TF)

po
w

er
 re

du
ct

io
n

(%
)

Fig. 4 The simulation results

V. CONCLUSION

This paper studies the trade-off between energy

efficiency and fault tolerance for real-time task sets.
Recognizing that the problem in discrete systems is NP-
hard, we proposed heuristic-based approach which
minimizes energy of task set for the given fault tolerant
constraints. Our approach is realized for HRTS analysis
when is necessary to examine connection between energy
consumption and fault tolerance through time redundancy.

We considered only dynamic power in this paper. It
should be noted that during the past decades, transistor
sizes entered deep submicron regimes where static power
consumption is now a non negligible source of power
dissipation even in running mode. Thus, the total power
consumption (i.e. dynamic plus static power) has to be
optimized instead of simply reducing dynamic power.

ACKNOWLEDGEMENT

This paper is supported by Project Grant III44004 (2011-
2014) financed by Ministry of Education and Science,
Republic of Serbia.

REFERENCES

[1] oši , s., Jevti , M., “Scheduling in RTS Using Time

Redundancy for System Recovery After Faults”,
Proceedings of papers, Indel 2004, Banja Luka, pp.
146-149, November 2004.

[2] Woonseok, K., Dongkun, S., Han-Saem, Y., Jihong, K.,
Sang, M. L., “Performance Comparison of Dynamic
Voltage Scaling Algorithms for Hard Real-Time
Systems”, Proceedings of the Eighth IEEE Real-Time
and Embedded Technology and Applications
Symposium (RTAS’02), pp. 219 – 228, 2002.

[3] Ahmadian, A. S., Hosseingholi, M., Ejlali, A. “A
Control-Theoretic Energy Management for Fault-
Tolerant Hard Real-Time Systems”, 2010 IEEE
International Conference on Computer Design, pp. 173-
178, 2010.

[4] Zhu, P., Yang, F., Tu, G., Luo, W.,“Fault-Tolerant
Scheduling for Periodic Tasks based on DVFS”,
Proceedings of the 9th International Conference for
Young Computer Scientists, pp. 2186 – 2191, 2008.

[5] Santos, R. M., Santos, J., Orozco, J. D., “Power saving
and fault-tolerance in real-time critical embedded
system”, Journal of system Architecture 55, pp. 90-101,
2009.

[6] “Intel PXA270 Processor Electrical, Mechanical and
Thermal Specification Data sheet”,
www.phytec.com/pdf/datasheets/PXA270_DS.pdf,
2005.

[7] Cottet, F., Delacroix, J., Mammeri, Z., “Scheduling in
Real-Time Systems”, John Wiley & Sons, 2002.

[8] Dakai, Z., Melhem, R., Mosse, D., “The Effects of
Energy Management on Reliability in Real-Time
Embedded Systems”, Proceedings of the 2004
IEEE/ACM International conference on Computer-
aided design, pp. 35-40, 2004.

[9] oši , S., Jevti , M., “Analysis of Real-Time Systems
Timing Constrains”, SSSS2010, 3rd Small Systems
Simulation Symposium 2010, February, 12-14, Faculty
of Electronic Engineering, Niš, Serbia, pp 56-60, 2010.

[10] Lima, G., Burns, A., “An Optimal Fixed-Priority
Assignment Algorithm for Supporting Fault-Tolerant
Hard Real-Time Systems”, IEEE Transaction on
Computers, Vol. 52, No. 10, pp. 1332-1346, October
2003.

[11] Locke, C. D., Vogel, D. R., Mesler, T. J., “Building a
Predictable Avionics Platform in Ada: A Case Study”,
Proceedings of IEEE Real-Time Systems Symposium,
pp. 181–189, 1991.

7 voltage levels

2 voltage levels

4 voltage levels

105

Proceedings of Small Systems Simulation Symposium 2012, Niš, Serbia, 12th-14th February 2012

