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Abstract - In this paper the tradeoff between dynamic voltage 
and frequency scaling (DVFS) techniques and faults tolerance are 
considered. We analyzed this tradeoff using one heuristic-based 
DVFS algorithm which we designed. The proposed algorithm 
minimizes the energy consumption of one real-time task set when 
the transient faults are exceeded. It is assumed that the tasks 
execute on processors with variable frequency and voltage levels. 
The simulation results show that our proposed algorithm can be 
used for real-time systems analysis from the perspective of 
finding compromise between energy efficiency and fault 
tolerance. 
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I. INTRODUCTION 

 
Hard real-time systems (HRTS) play an important role 

in many areas of daily life: robotics, cosmic research, 
automotive industry, process control, factory automation… 
Those systems have been designed in order to be safe and 
extremely reliable. They are usually realized as real time 
systems with the ability of tolerating some faults. A fault-
tolerant HRTS has to ensure that faults in the system do not 
lead to a failure. 

Dependability of one real-time system can be affected 
by different kinds of faults, including transient, permanent 
and intermittent faults. Among these, the transient faults 
are much more common than faults of other two types. 
Since transient faults have the feature that they occur and 
then disappear, fault tolerance can be achieved, running the 
task affected by a transient fault again (i.e. re-executing the 
task). It means that time redundancy can be used as fault-
tolerance techniques by using free slack time in the system 
schedule to perform recovery executions, [1]. 

Beside high level of dependability, energy efficiency is 
crucial to many real-time systems due to their limited 
energy supply and severe thermal constraints of the 
operating environment. Dynamic Voltage and Frequency 
Scaling (DVFS) is the most popular and widely deployed 
technique for reducing power and energy consumption of 
processors [2], [3], [4], [5]. Nowadays, DVFS is a 
commonly used technique for energy management and is 
supported by many commercial processors [6]. 

Fault tolerances through time redundancy as well as 
energy management through frequency and voltage scaling 

have been well studied in the context of real-time systems. 
For HRTS that require both fault tolerance and energy 

efficiency, there is a lack of efficient solutions. Simply 
applying fault recovery techniques and energy 
minimization techniques one after the other only results in 
inferior quality. This is because minimizing energy first 
may not leave enough slack for fault recovery, and 
minimizing energy after fault recovery reservation treats 
normal task executions and re-executions (for fault 
recovery) equally, which is equivalent to optimizing the 
worst case that happens rarely. Since, free slack time is a 
limited resources, it is obvious that more slack time for 
DVFS technique means less time for fault tolerance, and 
vice versa. Therefore, there is a tradeoff between low 
energy consumption and high fault-tolerance. 

The tradeoff between DVFS techniques and faults 
tolerance is focus of this paper. In accordance with that, we 
designed one heuristic-based DVFS algorithm and used it 
for energy efficiency and fault tolerance analysis of HRTS. 

The rest of the paper is organized as follows. Section II 
describes real-time system, power, fault and feasibility 
models. Next section III introduces our proposed heuristic-
based DVFS algorithms. Section IV gives the simulation 
results and finally, Section V presents our conclusions. 

 
II. MODELS DESCRIPTION 

 
A. System model 
 

We consider one uniprocessor real-time system with 
variable CPU frequency fj (j=1,..., m) where fj < fj+1. The 
voltage and the operating frequency of the CPU may be 
switched between m values. This system can be used for 
one real-time task set execution. We assume a set of n real-
time tasks, ={ 1,..., n} where each tasks are defined by a 
minimum inter-arrival time Ti, worst case execution time 
(WCET) Ci and deadline Di. We assume that Di  Ti, for i = 
1, 2, ..., n. The WCET of real-time tasks corresponds to 
executing the task at the maximum frequency fm. For 
simplicity, we assume that the WCET of a task scales 
linearly with the processing speed. So, if we scale the 
operating frequency by a factor , then WCET must be 
scaling by factor 1/ , i.e. 

Ci (fj)= Ci (fm) fm / fj. 
Each task is assigned a unique priority pi and all of 

them are periodic, fully preemptive and independent. 
Algorithm for scheduling real-time tasks could be any 
priority assignment algorithm, [7]. 
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B. Power model 
 
Power consumption of an active processor can be 

modeled as 
PA(f) = Pd(f) + Pind, 

where Pd(f) and Pind are frequency dependent power and 
frequency independent power respectively [8]. Frequency 
dependent power is 

Pd(f) = V2(f) Cef f 
where V is supply voltage and it is a function of operating 
frequency, Cef is the switch capacitance and f is the 
frequency. Beside power, for DVFS techniques energy is 
equally important and it is defined as the integral of power 
over time. 
 

 
 

Fig. 1 Power and energy consumption for real-time task i: 
a) for frequency f and voltage V 

b) for frequency f/2 and voltage V 
c) for frequency f /2 and voltage V/2 

 
Fig. 1 a) illustrates energy consumption of one real-time 

task i on operating frequency f and for supply voltage V. 
Energy of real-time task i is proportional to the marked 
rectangle area. Fig. 1 b) presents the situation when the 
operating frequency f is reduced by half and because of that 
task needs more time to execute. In that situation 
processor’s power consumption is lower but the energy 

consumption remains the same. Fig. 1 c) shows the 
influence on power and energy consumption when supply 
voltage V is reduces by half. Lowering the supply voltage V 
the significant amount of energy could be reduced, because 
of the quadratic relation between power and V. The 
maximum energy reduction is obtained by lowering the 
supply voltage and operating frequency simultaneous. 

 
C. Fault model 

 
We assume that faults can occur during execution of 

any task. We consider transient faults and assume that the 
consequences of a fault can be eliminated by simple re-
execution of the affected task at its original priority level 
and at its original CPU frequency. The re-execution of the 
corrupted task must not violate timing constraints of any 
task in . 

 
D. Feasibility model 

 
In our approach we use the response time analysis 

(RTA) to check the feasibility of fault tolerant real-time 
task set. In the RTA, the fault-tolerance capability of a RTS 
is represented by a single parameter, TF, which corresponds 
to minimum time interval between two consecutive faults 
that the RTS can tolerate. More about RTA can be found in 
[9], [10]. 

The basic equation characterize for RTA is Eq. (1). 
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With Eq. (1) the response time Ri of a task i could be 

calculated. Eq. (1) has three main addends. The first is 
WCET Ci for a task i. The second presents interference 
due to preemption by higher priority tasks. We use hp(i) to 
denote the set of tasks with higher priorities than i, 
hp(i)={ j pj > pi}. The third addend refers to possible 
faults in the system. If we assume that inter-arrival time 

between faults is TF then there can be at most 
FT
iR

 faults 

during the response time Ri of task i. Since these faults 
could occur during the execution of task i or any higher 
priority task which has preempted i, each fault may add 

)jC(
i)i(hpj

max  to the response time of task i. So, the 

third addend in Eq. (1) presents an extra time needed tasks 
recovery due to faults. 
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Since Ri appears on both sides Eq. (1) is recurrence 
relations which starts with iC0

iR . The solution is found 

when n
iR1n

iR . If during the iteration process we get that 

iD1n
iR  then task i is infeasible and iteration process 

must be terminated. 
Fig. 2 illustrates RTA applied on one simple RTS with 

two periodic real-time tasks i and j. Two faults occur in 
the system and the time between these two consecutive 

faults is TF. 
Fig. 2 a) presents the situation when first fault occurs 

just a little bit before the end of tasks j1. System 
overcomes this fault by executing task j1 again. This is 
situation when TF is long enough and real-time system can 
overcome these faults. System of these two tasks are 
schedulable i.e. both tasks execute before their deadlines, 
Di and Dj. Response time of tasks i and j are the output 
results of RTA and they are also shown on Fig. 2 a). 

Fig. 2 b) presents scheduling of the same real-time tasks 
i and j when two faults occur in the system. Now, time 

between two consecutive faults TF is not long enough and 
real-time system cannot tolerate these faults. First fault 
occurs just a little bit before the end of tasks i1 execution. 
Real-time system can overcomes this fault by executing 
task i1 again. Second fault occurs just a little bit before the 
end of tasks j1 execution. Now time redundancy is not 
enough to tolerate this fault. Systems starts procedure for 
overcoming fault by executing task j1 again but timing 
characteristics of tasks j1 cannot be satisfied and j1 
missing its deadline i.e. Rj > Dj. This is not acceptable in 

one hard real-time system, so in this case real-time system 
is not fault tolerant. 

 
III. PROPOSED DVFS ALGORITHM 

 
The focus of this section is to explain our proposed 

DVFS policy which fulfils energy efficiency and faults 
tolerance requirements. For this purpose we created a 
heuristic-based algorithm to find appropriate execution 
frequency for each task, from the real-time tasks set, that 
minimize energy consumption when faults are absent. The 
RTA is the basic of our proposed algorithm. This analysis 
is used to guarantee feasibility of real-time tasks set and 
fault tolerance. 

Fig. 3 shows the pseudo code of our proposed 
algorithm. The input parameters for the algorithm are: 

- CPU frequency fj (j=1,..., m) where fj < fj+1 and m 
is number of frequency levels; 

- characteristics for all n real-time tasks from the 
set: inter-arrival time Ti, worst case execution time 
Ci, priority pi and deadline Di, for i=1,..., n; 

- minimum time interval between two consecutive 
faults TF. 

 
 

Input: CPU frequency levels fj (j=1..m), 
      characteristics for n real time tasks (Ci, Di, Ti, pi), 
      fault tolerant constraint (TF) 
_______________________________ 

          
       (1)    for each Task in TaskSet set Task’s_Freq to fm and set  

Task’s_Key to true; 
       (2)    repeat step (3) to (7) until there are true Task’s_Key in 

the TaskSet; 
       (3)    for each unlock Task in TaskSet do  
       (4)       temporarily set Task’s_Freq to Lower_Task’s_Freq; 
       (5)       if new TaskSet is not feasible 
       (6)            then set Task’s_Key to false;  
       (7)            else calculate Power as Power(Task’s_Freq) –                

Power(Lower_Task’s_Freq); 
       (8)    find Task with maximum Power and set           

Task’s_Freq to Lower_Task’s_Freq; 
 
_______________________________ 

       Output: TaskSet with new frequency assigne to each Task 
    
  

Fig. 3 Heuristic algorithm solution 
 

The algorithm starts with assigning the maximum 
execution frequency, fm, to each real-time task, step (1). 
Also, at the beginning, all tasks are allowed to change the 
frequency - we say that all tasks are unlocked. An iteration 
of the algorithm decreases the frequency of one task for 
one frequency level. The chosen task is one for which the 
frequency decrement yields maximum power reduction 
among all unlocked tasks provided that tasks set remains 
feasible. To find such task, the algorithm checks all 

 
 

 

Fig. 2 a) TF is long enough and RTS is fault tolerant 
b) TF is not long enough that RTS stays fault tolerant 

a) 
 
 
 
 
 
 
 
 
 
 
b) 
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currently unlocked task. For example, frequency index of 
one unlock task i is temporarily decreased for one 
frequency level, i.e. from fj to fj-1, step (4), and feasibility of 
task-set is tested using Eq. (1), step (5). If task-set is not 
feasible, i is locked, step (6). Otherwise, if task-set is 
feasible, the difference between power consumption of i at 
lower (fj-1) and higher (fj) frequency is calculated, step (7), 
as: 

Pi = (Ci(fj)-Ci(fj-1))/Ti. 
Then, i’s frequency is changed back to fi. After checking 
all tasks, one that remains unlocked and provides the 
maximal power reduction is selected, and its frequency 
index is decremented, step (8). Additionally, the selected 
task is locked if its new frequency equals 1, i.e. 
corresponds to the lowest execution frequency, f1. After 
that, the algorithm enters the next iteration. The algorithm 
finishes when there are no more unlocked tasks. The 
frequency assignment to each task is algorithm’s output. 

 
IV. SIMULATION RESULTS 

 
The simulator we realized is based on our proposed 

heuristic-based algorithm. The input parameters of the 
simulator are real-time task set characteristics, processor’s 
voltage and frequency levels and fault constraints. On the 
bases of proposed algorithm, simulator has to find the 
appropriate execution frequencies for each real-time task 
that lead to the maximum energy savings for the given fault 
tolerance constraints. Power consumption of task set are 
simulator’s output result. 

 
TABLE I 

TASKS SET FROM GENERIC AVIONICS PLATFORM 

i pi 
Ci 

(ms) 
Ti=Di 
(ms) 

Nav_Status 1 1000 1 

BET_E_Status_Update 2 1000 1 

Display_Stat_Update 3 200 3 

Display_Keyset 4 200 1 

Display_Stores_Update 5 200 1 

Nav_Steering_Cmds 6 200 3 

Tracking_Target_Upd 7 100 5 

Display_Hook_Update 8 80 2 
 
We perform simulations with a number of synthesized 

real-time tasks sets and few real-world applications. The 
characteristics of on of the real-world application are 
summarized in Table I. It is a task set taken from the 
Generic Avionics Platform (GAP) used in [11]. 

For the CPU frequency levels we used data from [6] 
based on the published data of Intel Xscale PXA270. The 
data sheet of this processor is available online at its 
manufactures’ websites. We used specifications listed in 
Table II. 

 
   TABLE II 
FREQUENCY AND VOLTAGE LEVELS OF INTEL XSCALE PXA270 

Frequency 
(MHz) 

Voltage 
(V) 

Active power 
consumption 

(mW)

624 1.55 925 

520 1.45 747 

416 1.35 570 

312 1.25 390 

208 1.15 279 

104 0.9 116 

13 0.85 44.2 
 
Fig. 4 shows the simulation results for GAP task set and 

Intel Xscale PXA270 processor. The x-axis represents the 
ratio of TFmin to TF. TFmin is minimum time interval between 
two consecutive faults that the task set can tolerate on 
maximal executing frequency and TF is input simulation 
parameter. This axis represents the normalized TF value 
which is proportional to fault tolerance of the task set. The 
y-axis represents the power reduction calculated in 
percents. This reduction is presented as power saving with 
respect to the power consumption at maximum frequency. 

The simulation was done for three possible scenarios 
connected with processor. In the first case we used all 7 
voltage levels, in the second 4 (0.85V, 1.15V, 1.35V, 
1.55V) and in the third just 2 voltage levels (1.15V, 
1.55V).  

All three scenarios indicate the same fact that power 
reduction leads to less fault tolerance and vice versa. It can 
be concluded that power reduction is better when more 
voltage levels are included. Now, due to simulation results, 
we can better perceive the tradeoff between power 
consumptions and fault tolerance. For example, let’s 
suppose that power reduction demands for the given task 
set are between 16% and 20%. It can be seen, from the Fig. 
4, that 7 voltage levels processor fulfill the power reduction 
demands. Also, fault tolerances vary for the given power 
reduction interval, so the best is to choose one with 
maximal tolerances. 

Realized simulator offers the possibility to analyze one 
real-time task set when the main question is to find 
compromise between power or energy consumption and 
fault tolerance constraints. Our opinion is that this 
simulator could be successfully used in the RTS design 
proces
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Fig. 4 The simulation results 

 
V. CONCLUSION 

 
This paper studies the trade-off between energy 

efficiency and fault tolerance for real-time task sets. 
Recognizing that the problem in discrete systems is NP-
hard, we proposed heuristic-based approach which 
minimizes energy of task set for the given fault tolerant 
constraints. Our approach is realized for HRTS analysis 
when is necessary to examine connection between energy 
consumption and fault tolerance through time redundancy. 

We considered only dynamic power in this paper. It 
should be noted that during the past decades, transistor 
sizes entered deep submicron regimes where static power 
consumption is now a non negligible source of power 
dissipation even in running mode. Thus, the total power 
consumption (i.e. dynamic plus static power) has to be 
optimized instead of simply reducing dynamic power.  
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